Interaction of Intrinsic and Synaptic Currents Mediate Network Resonance Driven by Layer V Pyramidal Cells.
نویسندگان
چکیده
Cortical oscillations modulate cellular excitability and facilitate neuronal communication and information processing. Layer 5 pyramidal cells (L5 PYs) drive low-frequency oscillations (<4 Hz) in neocortical networks in vivo. In vitro, individual L5 PYs exhibit subthreshold resonance in the theta band (4-8 Hz). This bandpass filtering of periodic input is mediated by h-current (Ih) and m-current (IM) that selectively suppress low-frequency input. It has remained unclear how these intrinsic properties of cells contribute to the emergent, network oscillation dynamics. To begin to close this gap, we studied the link between cellular and network mechanisms of network resonance driven by L5 PYs. We performed multielectrode array recordings of network activity in slices of medial prefrontal cortex from the Thy1-ChR2-eYFP line and activated the network by temporally patterned optogenetic suprathreshold stimulation. Networks driven by stimulation of L5 PYs exhibited resonance in the theta band. We found that Ih and IM play a role in resonant suprathreshold network response to depolarizing stimuli. The action of Ih in mediating resonance was dependent on synaptic transmission while that of IM was not. These results demonstrate how synergistic interaction of synaptic and intrinsic ion channels contribute to the response of networks driven by L5 PYs.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملNoradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex
Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملDOPAMINE D1/5 RECEPTOR-MEDIATED LTP OF INTRINSIC EXCITABILITY IN RAT PREFRONTAL CORTICAL NEURONS: Ca-DEPENDENT INTRACELLULAR SIGNALING
Prefrontal Cortex (PFC) dopamine D1/5 receptors modulate long-and short-term neuronal plasticity which may contribute to cognitive functions. Synergistic to synaptic strength modulation, direct post-synaptic D1/5 receptor activation also modulates voltage-dependent ionic currents that regulate spike firing, thus altering the neuronal input-output relationships in a process called long-term pote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 27 9 شماره
صفحات -
تاریخ انتشار 2017